Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, sus scrofa.

نویسندگان

  • Kuang-Dah Yeh
  • Tracy Popowics
چکیده

The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n = 3), corresponding with the mucosal penetration stage of M(1) tooth eruption, and 23 weeks (n = 3), corresponding with early occlusion of M(1) /M(1) . Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M(1) roots on one side. Following euthanasia, bone samples for haematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M(1) . However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of occlusal function on structural adaptation in alveolar bone of the growing pig, Sus Scrofa.

OBJECTIVES this study investigated the effects of growth and tooth loading on the structural adaptation of the developing alveolar bone adjacent to the tooth root as the tooth erupted into function. Growth and occlusal function were expected to lead to increased alveolar bone density. Meanwhile, the supporting alveolar bone was expected to develop a dominant trabecular orientation (anisotropy) ...

متن کامل

Functional cues in the development of osseous tooth support in the pig, Sus scrofa.

Alveolar bone supports teeth during chewing through a ligamentous interface with tooth roots. Although tooth loads are presumed to direct the development and adaptation of these tissues, strain distribution in the alveolar bone at different stages of tooth eruption and periodontal development is unknown. This study investigates the biomechanical effects of tooth loading on developing alveolar b...

متن کامل

The effects of tooth extraction on alveolar bone biomechanics in the miniature pig, Sus scrofa.

OBJECTIVE This study investigated the role of occlusion in the development of biomechanical properties of alveolar bone in the miniature pig, Sus scrofa. The hypothesis tested was that the tissues supporting an occluding tooth would show greater stiffness and less strain than that of a non-occluding tooth. DESIGN Maxillary teeth opposing the erupting lower first molar (M(1)) were extracted on...

متن کامل

MicroRNAome and Expression Profile of Developing Tooth Germ in Miniature Pigs

MicroRNAs (miRNAs) play important roles in the regulation of rodent tooth development, but little is known about their role in tooth development in large mammals. We identified 637 unique miRNA sequences in a large-scale screen for miRNA expression profiles in the developing lower deciduous molars of miniature pigs (Sus scrofa) using Illumina Solexa deep sequencing. These candidate miRNAs and a...

متن کامل

SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine

The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. Ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anatomia, histologia, embryologia

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2011